
Tutorial Sheet-2: Relations, Functions, and Equivalent sets

1. Let R be the relation $R = \{(a, b) \mid a < b\}$ on the set of integers \mathbb{Z} . Find (a) R^{-1} (b) R^c .
2. How many relations are there on a set with n elements that are

(a) symmetric	(b) antisymmetric	(c) reflexive.
---------------	-------------------	----------------
3. Show that the relation R on a set A is symmetric if and only if $R = R^{-1}$.
4. Let A be the set of non-zero integers and let R be the relation on $A \times A$ defined as follows: $(a, b) R (c, d)$ whenever $ad = bc$. Prove that R is an equivalence relation.
5. Consider the set of integers \mathbb{Z} . Define aRb if $b = a^r$ for some positive integer r . Show that R is a partial order on \mathbb{Z} .
6. Give an example of relations R on $A = \{1, 2, 3\}$ having the following property.

(a) R is both symmetric and antisymmetric	(b) R is neither symmetric nor antisymmetric.
(c) R is transitive but $R \cup R^{-1}$ is not transitive.	
7. Let R be the following equivalence relation on the set $A = \{1, 2, \dots, 6\}$:

$$R = \{(1, 1), (1, 5), (2, 2), (2, 3), (2, 6), (3, 2), (3, 3), (3, 6), (4, 4), (5, 1), (5, 5), (6, 2), (6, 3), (6, 6)\}.$$
 Find the equivalence classes of R , i.e., find the partition of A induced by R .
8. Let $f : A \rightarrow B$ be a function and $E, F \subseteq A$ and $G, H \subseteq B$. Then show that

(a) $f(E \cup F) = f(E) \cup f(F)$	(b) $f(E \cap F) \subseteq f(E) \cap f(F)$
(c) $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(H)$	(d) $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H)$.
9. (a) Show that if $f : A \rightarrow B$ is injective and $E \subseteq A$, then $f^{-1}(f(E)) = E$. Give an example that equality need not hold if f is not injective.

 (b) Show that if $f : A \rightarrow B$ is surjective and $H \subseteq B$, then $f(f^{-1}(H)) = H$. Give an example that equality need not hold if f is not surjective.

 (c) Let A, B , and C be sets. Show that

(a) $A \cup \emptyset = A$	(b) $A \cap B \subseteq A$	(c) $A \cup (B - A) = A \cup B$	(d) $(A - C) \cap (C - B) = \emptyset$.
----------------------------	----------------------------	---------------------------------	--

 (d) Let A and B be subsets of a Universal set U . Show that $A \subseteq B$ if and only if $B^c \subseteq A^c$.
10. Let A and B be sets with $|A| = l$ and $|B| = m$.
 - (a) Find the number of injective functions from A to B .
 - (b) Find the number of surjective functions from A to B .
 - (c) Find the number of bijective functions from A to B .
11. Show that $(0, \infty) \approx (-\infty, \infty) \approx (-\frac{\pi}{2}, \frac{\pi}{2})$.
12. (a) $(0, 1) \times (0, 1) \approx (0, 1)$ (b) $\mathbb{R} \approx \mathbb{R} \times \mathbb{R}$ (c) $[0, 1] \approx \mathcal{P}(\mathbb{N})$ (Power set of \mathbb{N}).
13. Show that $\mathcal{P} = \{p(x) = a_0 + a_1x + a_2x^2 + \dots + a_nx^n : a_0, a_1, \dots, a_n \in \mathbb{Z}\} \approx \mathbb{N}$.
14. A real number r is called algebraic if r is a solution of $p(x) = 0$, where $p(x) \in \mathcal{P}$ (in above). Show that the set A of all algebraic numbers is equivalent to \mathbb{N} .